
ISO Lisp Object System Specification

2. Functions in the Programmer Interface

Author: Richard P. Gabriel

Based on the document “Common Lisp Object System Specification” by Daniel
G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E. Keene, Gregor
Kiczales, and David A. Moon.

Draft Dated: April 15, 1992
All Rights Reserved

The distribution and publication of this document are not restricted. In order to
preserve the integrity of the specification, any publication or distribution must
reproduce this document in its entirety, preserve its formatting, and include this
title page.

The author wishes to thank Patrick Dussud and Jon L White
for their contributions to this document.

Functions in the Programmer Interface 2–1

CONTENTS

Introduction . 2–3
Notation . 2–5
call-next-method . 2–7
class-name . 2–9
class-of . 2–10
defclass . 2–11
defgeneric . 2–14
defmethod . 2–17
find-class . 2–19
initialize-instance . 2–20
make-instance . 2–21
next-method-p . 2–22
slot-boundp . 2–23
slot-exists-p . 2–24

2–2 ISO Lisp Object System Specification

Introduction

This chapter describes the functions, macros, special forms, and generic functions provided by
the ISO Lisp Object System Programmer Interface. The Programmer Interface comprises the
functions and macros that are sufficient for writing most object-oriented programs.

This chapter is reference material that requires an understanding of the basic concepts of the ISO
Lisp Object System. The functions are arranged in alphabetical order for convenient reference.

The description of each function, macro, special form, and generic function includes its purpose,
its syntax, the semantics of its arguments and returned values, and often an example and cross-
references to related functions.

The syntax description for a function, macro, or special form describes its parameters. The
following is an example of the format for the syntax description of a function:

Syntax:

F x y &optional z &key k [Generic Function]

This description indicates that the generic function F has two required parameters, x and y. In
addition, there is an optional parameter z and a keyword parameter k.

The generic functions described in this chapter are all standard generic functions. They all use
standard method combination.

The description of a generic function includes descriptions of the methods that are defined on
that generic function by the ISO Lisp Object System. A method signature is used to describe
the parameters and parameter specializers for each method. The following is an example of the
format for a method signature:

Method Signature:

F (x class) (y t) &optional z &key k [Primary Method]

This signature indicates that this method on the generic function F has two required parameters,
x , which must be an instance of the class class, and y, which can be any object. In addition, there
is an optional parameter z and a keyword parameter k. This signature also indicates that this
method on F is a primary method and has no qualifiers.

The syntax description for a generic function describes the lambda-list of the generic function
itself, while the method signatures describe the lambda-lists of the defined methods.

Any implementation of the ISO Lisp Object System is allowed to provide additional methods on
the generic functions described in this chapter.

It is useful to categorize the functions and macros according to their role in this standard:

Functions in the Programmer Interface 2–3

• Tools used for simple object-oriented programming

These tools allow for defining new classes, methods, and generic functions, and for making
instances. Some tools used within method bodies are also listed here. Some of the macros
listed here have a corresponding function that performs the same task at a lower level of
abstraction.

call-next-method
defclass
defgeneric
defmethod
initialize-instance
make-instance
next-method-p
slot-boundp

• Functions underlying the commonly used macros

class-name
find-class
slot-exists-p

• General ISO Lisp support tools

class-of

2–4 ISO Lisp Object System Specification

Notation

This specification uses an extended Backus Normal Form (BNF) to describe the syntax of the
Object System. This section discusses the syntax of BNF expressions. The primary extension
used is the following:

[[O]]

An expression of this form will appear whenever a list of elements is to be spliced into a larger
structure and the elements can appear in any order. The symbol O represents a description of the
syntax of some number of syntactic elements to be spliced; that description must be of the form

O1 | . . . | ON

where each Oi can be either of the form S or of the form S∗. The expression [[O]] means that a
list of the form

(Oi1 . . . Oij) 1 ≤ j

is spliced into the enclosing expression, such that if n 6= m and 1 ≤ n,m ≤ j, then either
Oin 6= Oim or Oin = Oim = Qk, where for some 1 ≤ k ≤ N , Ok is of the form Qk∗.

For example, the expression

(x [[A | B∗ | C]] y)

means that at most one A, any number of B’s, and at most one C can occur in any order. It is a
description of any of these:

(x y)

(x B A C y)

(x A B B B B B C y)

(x C B A B B B y)

but not any of these:

(x B B A A C C y)

(x C B C y)

In the first case, both A and C appear too often, and in the second case C appears too often.

A simple indirection extension is introduced in order to make this new syntax more readable:

↓O

Functions in the Programmer Interface 2–5

If O is a non-terminal symbol, the right-hand side of its definition is substituted for the entire
expression ↓O. For example, the following BNF is equivalent to the BNF in the previous example:

(x [[↓O]] y)

O ::= A | B∗ | C

2–6 ISO Lisp Object System Specification

call-next-method Function

Purpose:

The function call-next-method can be used within the body of a method defined by a method-
defining form to call the next method.

The function call-next-method returns the value or values returned by the method it calls. If
there is no next method, the generic function an error is signaled.

The type of method combination used determines which methods can invoke call-next-method.
The standard method combination type allows call-next-method to be used within primary
methods and :around methods. The standard method combination type defines the next method
as follows:

• If call-next-method is used in an :around method, the next method is the next most
specific :around method, if one is applicable.

• If there are no :around methods at all or if call-next-method is called by the least specific
:around method, other methods are called as follows:

– All the :before methods are called, in most-specific-first order. The function call-next-
method cannot be used in :before methods.

– The most specific primary method is called. Inside the body of a primary method, call-
next-method may be used to pass control to the next most specific primary method. An
error is signaled if call-next-method is used and there are no more primary methods.

– All the :after methods are called in most-specific-last order. The function call-next-
method cannot be used in :after methods.

For further discussion of call-next-method, see the sections “Standard Method Combination”
and “Built-in Method Combination Types.”

Syntax:

call-next-method [Function]

Arguments:

call-next-method passes the current method’s original arguments to the next method. Neither
argument defaulting, nor using setq, nor rebinding variables with the same names as parameters
of the method affects the values call-next-method passes to the method it calls.

Values:

The function call-next-method returns the value or values returned by the method it calls.

Functions in the Programmer Interface 2–7

call-next-method

Remarks:

Further computation is possible after call-next-method returns.

The function call-next-method has lexical scope and indefinite extent.

The function next-method-p can be used to test whether there is a next method.

If call-next-method is used in methods that do not support it, an error is signaled.

See Also:

“Method Selection and Combination”

“Standard Method Combination”

“Built-in Method Combination Types”

next-method-p

2–8 ISO Lisp Object System Specification

class-name Standard Generic Function

Purpose:

The generic function class-name takes a class object and returns its name.

Syntax:

class-name class [Generic Function]

Method Signatures:

class-name (class class) [Primary Method]

Arguments:

The class argument is a class object.

Values:

The name of the given class is returned.

Remarks:

The name of an anonymous class is nil.

If S is a symbol such that S =(class-name C) and C =(find-class S), then S is the proper
name of C. For further discussion, see the section “Classes.”

See Also:

“Classes”

find-class

Functions in the Programmer Interface 2–9

class-of Function

Purpose:

The function class-of returns the class of which the given object is an instance.

Syntax:

class-of object [Function]

Arguments:

The argument to class-of may be any ISO Lisp object.

Values:

The function class-of returns the class of which the argument is an instance.

2–10 ISO Lisp Object System Specification

defclass Macro

Purpose:

The macro defclass defines a new named class. It returns the new class object as its result.

The syntax of defclass provides options for specifying initialization arguments for slots, for
specifying default initialization values for slots, and for requesting that methods on specified
generic functions be automatically generated for reading and writing the values of slots. No
reader or writer functions are defined by default; their generation must be explicitly requested.

Defining a new class also causes a type of the same name to be defined. The predicate (typep

object class-name) returns true if the class of the given object is class-name itself or a subclass
of the class class-name. A class object can be used as a type specifier. Thus (typep object class)
returns true if the class of the object is class itself or a subclass of class.

Syntax:

defclass class-name ({superclass-name}*) ({slot-specifier}*)[[↓class-option]]

class-name::= symbol

superclass-name::= symbol

slot-specifier ::= slot-name | (slot-name [[↓slot-option]])

slot-name::= symbol

slot-option::= {:reader reader-function-name}* |
{:writer writer-function-name}* |
{:accessor reader-function-name}* |
{:initform form} |

reader-function-name::= symbol

writer-function-name::= function-specifier

function-specifier ::= {symbol | (setf symbol)}

class-option::= (:metaclass class-name)

Figure 2–1. Syntax for defclass

Arguments:

Functions in the Programmer Interface 2–11

defclass

The class-name argument is a non-nil symbol. It becomes the proper name of the new class.

Each superclass-name argument is a non-nil symbol that specifies a direct superclass of the new
class. The new class will inherit slots and methods from each of its direct superclasses, from their
direct superclasses, and so on. See the section “Inheritance” for a discussion of how slots and
methods are inherited.

Each slot-specifier argument is the name of the slot or a list consisting of the slot name followed
by zero or more slot options. The slot-name argument is a symbol that is syntactically valid for
use as a ISO Lisp variable name. If there are any duplicate slot names, an error is signaled.

The following slot options are available:

• The :reader slot option specifies that an unqualified method is to be defined on the generic
function named reader-function-name to read the value of the given slot. The reader-
function-name argument is a non-nil symbol. The :reader slot option may be specified
more than once for a given slot.

• The :writer slot option specifies that an unqualified method is to be defined on the generic
function named writer-function-name to write the value of the slot. The writer-function-name
argument is a function specifier. The :writer slot option may be specified more than once for
a given slot.

• The :accessor slot option specifies that an unqualified method is to be defined on the
generic function named reader-function-name to read the value of the given slot and that
an unqualified method is to be defined on the generic function named (setf reader-function-
name) to be used with setf to modify the value of the slot. The reader-function-name
argument is a non-nil symbol. The :accessor slot option may be specified more than once for
a given slot.

• The :initform slot option is used to provide a default initial value form to be used in the
initialization of the slot. The :initform slot option may be specified once at most for a given
slot. This form is evaluated every time it is used to initialize the slot. The lexical environ-
ment in which this form is evaluated is the lexical environment in which the defclass form
was evaluated. Note that the lexical environment refers both to variables and to functions.
The dynamic environment is the dynamic environment in which make-instance was called.
See the section “Object Creation and Initialization.”

No implementation is permitted to extend the syntax of defclass to allow (slot-name form)

as an abbreviation for (slot-name :initform form).

Each class option is an option that refers to the class as a whole or to all class slots. The follow-
ing class option is available:

• The :metaclass class option is used to specify that instances of the class being defined are
to have a different metaclass than the default provided by the system (the class <standard-
class>). The class-name argument is the name of the desired metaclass. The :metaclass
class option may be specified once at most.

2–12 ISO Lisp Object System Specification

defclass

Values:

The new class object is returned as the result.

Remarks:

Note the following rules of defclass for standard classes:

• It is not required that the superclasses of a class be defined before the defclass form for that
class is evaluated.

• All the superclasses of a class must be defined before an instance of the class can be made.

• A class must be defined before it can be used as a parameter specializer in a defmethod
form.

The Object System may be extended to cover situations where these rules are not obeyed.

Some slot options are inherited by a class from its superclasses, and some can be shadowed
or altered by providing a local slot description. No class options are inherited. For a detailed
description of how slots and slot options are inherited, see the section “Inheritance of Slots and
Slot Options.”

The options to defclass can be extended. It is required that all implementations signal an error if
they observe a class option or a slot option that is not implemented.

It is valid to specify more than one reader, writer, accessor, or initialization argument for a
slot. No other slot option may appear more than once in a single slot description, or an error is
signaled.

If no reader, writer, or accessor is specified for a slot, the slot cannot be accessed.

See Also:

“Classes”

“Inheritance”

“Determining the Class Precedence List”

“Object Creation and Initialization”

make-instance

initialize-instance

Functions in the Programmer Interface 2–13

defgeneric Macro

Purpose:

The macro defgeneric is used to define a generic function or to specify options and declarations
that pertain to a generic function as a whole.

If (fboundp function-specifier) is nil, a new generic function is created. If (symbol-function
function-specifier) is a generic function or function-specifier names a non-generic function, a
macro, or a special form, an error is signaled.

Each method-description defines a method on the generic function. The lambda-list of each
method must be congruent with the lambda-list specified by the lambda-list option. If this
condition does not hold, an error is signaled. See the section “Congruent Lambda-Lists for All
Methods of a Generic Function” for a definition of congruence in this context.

The macro defgeneric returns the generic function object as its result.

Syntax:

defgeneric function-specifier lambda-list [[↓ option | method-description*]] [Macro]

function-specifier ::= {symbol | (setf symbol)}

lambda-list ::= ({var}*)

option::= (:method-combination symbol) |
(:generic-function-class class-name) |
(:method-class class-name)

method-description::= (:method {method-qualifier}* specialized-lambda-list
{declaration | documentation}* {form}*)

method-qualifier ::= non-nil-atom

specialized-lambda-list ::= ({var | (var parameter-specializer-name)}*
[&rest var])

parameter-specializer-name::= symbol

method-qualifier ::= non-nil-atom

Arguments:

2–14 ISO Lisp Object System Specification

defgeneric

The function-specifier argument is a non-nil symbol or a list of the form (setf symbol).

The lambda-list argument is an ordinary function lambda-list.

The following options are provided. A given option may occur only once, or an error is signaled.

• The :generic-function-class option may be used to specify that the generic function is to
have a different class than the default provided by the system (the class <standard-generic-
function>). The class-name argument is the name of a class that can be the class of a
generic function.

• The :method-class option is used to specify that all methods on this generic function are
to have a different class from the default provided by the system (the class <standard-
method>). The class-name argument is the name of a class that is capable of being the
class of a method.

• The :method-combination option is followed by a symbol that names a type of method
combination.

The method-description arguments define methods that will be associated with the generic
function. The method-qualifier and specialized-lambda-list arguments in a method description are
the same as for defmethod.

The form arguments specify the method body. The body of the method is enclosed in an implicit
block. If function-specifier is a symbol, this block bears the same name as the generic function. If
function-specifier is a list of the form (setf symbol), the name of the block is symbol.

Values:

The generic function object is returned as the result.

Remarks:

The effect of the defgeneric macro is as if the following three steps were performed: first,
methods defined by previous defgeneric forms are removed; second, the generic function is
created if needed; and finally, methods specified by the current defgeneric form are added to the
generic function.

If no method descriptions are specified and a generic function of the same name does not already
exist, a generic function with no methods is created.

The lambda-list argument of defgeneric specifies the shape of lambda-lists for the methods on
this generic function. All methods on the resulting generic function must have lambda-lists that
are congruent with this shape. If a defgeneric form is evaluated and some methods for that
generic function have lambda-lists that are not congruent with that given in the defgeneric form,
an error is signaled. For further details on method congruence, see “Congruent Lambda-Lists for
All Methods of a Generic Function”

Implementations can extend defgeneric to include other options. It is required that an imple-

Functions in the Programmer Interface 2–15

defgeneric

mentation signal an error if it observes an option that is not implemented locally.

See Also:

“Congruent Lambda-Lists for All Methods of a Generic Function”

defmethod

2–16 ISO Lisp Object System Specification

defmethod Macro

Purpose:

The macro defmethod defines a method on a generic function.

If (fboundp function-specifier) is nil, a generic function is created with default values for the
argument precedence order (each argument is more specific than the arguments to its right in
the argument list), for the generic function class (the class <standard-generic-function>), for
the method class (the class <standard-method>), and for the method combination type (the
standard method combination type). The lambda-list of the generic function is congruent with
the lambda-list of the method being defined. If function-specifier names a non-generic function, a
macro, or a special form, an error is signaled.

If a generic function is currently named by function-specifier , where function-specifier is a symbol
or a list of the form (setf symbol), the lambda-list of the method must be congruent with the
lambda-list of the generic function. If this condition does not hold, an error is signaled. See the
section “Congruent Lambda-Lists for All Methods of a Generic Function” for a definition of
congruence in this context.

Syntax:

defmethod function-specifier {method-qualifier}* specialized-lambda-list [Macro]

function-specifier ::= {symbol | (setf symbol)}

method-qualifier ::= non-nil-atom

specialized-lambda-list ::= ({var | (var parameter-specializer-name)}*
[&rest var])

parameter-specializer-name::= symbol

Arguments:

The function-specifier argument is a non-nil symbol or a list of the form (setf symbol). It names
the generic function on which the method is defined.

Each method-qualifier argument is an object that is used by method combination to identify the
given method. A method qualifier is a non-nil atom. The method combination type may further
restrict what a method qualifier may be. The standard method combination type allows for
unqualified methods or methods whose sole qualifier is the keyword :before, the keyword :after,
or the keyword :around.

Functions in the Programmer Interface 2–17

defmethod

The specialized-lambda-list argument is like an ordinary function lambda-list except that the
names of required parameters can be replaced by specialized parameters. A specialized parameter
is a list of the form (variable-name parameter-specializer-name). Only required parameters may
be specialized. A parameter specializer name is a symbol that names a class. If no parameter
specializer name is specified for a given required parameter, the parameter specializer defaults to
the class named <object>. See the section “Introduction to Methods” for further discussion.

The form arguments specify the method body. The body of the method is enclosed in an implicit
block. If function-specifier is a symbol, this block bears the same name as the generic function. If
function-specifier is a list of the form (setf symbol), the name of the block is symbol.

Values:

The result of defmethod is the method object.

Remarks:

The class of the method object that is created is that given by the method class option of the
generic function on which the method is defined.

If the generic function already has a method that agrees with the method being defined on
parameter specializers and qualifiers, defmethod replaces the existing method with the one
now being defined. See the section “Agreement on Parameter Specializers and Qualifiers” for a
definition of agreement in this context.

The parameter specializers are derived from the parameter specializer names as described in the
section “Introduction to Methods.”

The expansion of the defmethod macro “refers to” each specialized parameter. This includes
parameters that have an explicit parameter specializer name of <object>. This means that
a compiler warning does not occur if the body of the method does not refer to a specialized
parameter. Note that a parameter that specializes on <object> is not synonymous with an
unspecialized parameter in this context.

See Also:

“Introduction to Methods”

“Congruent Lambda-Lists for All Methods of a Generic Function”

“Agreement on Parameter Specializers and Qualifiers”

2–18 ISO Lisp Object System Specification

find-class Function

Purpose:

The function find-class returns the class object named by the given symbol in the given environ-
ment.

Syntax:

find-class symbol &optional errorp [Function]

Arguments:

The first argument to find-class is a symbol.

If there is no such class and the errorp argument is not supplied or is non-nil, find-class signals
an error. If there is no such class and the errorp argument is nil, find-class returns nil. The
default value of errorp is t.

Values:

The result of find-class is the class object named by the given symbol.

Remarks:

The class associated with a particular symbol can be changed by using setf with find-class. The
results are undefined if the user attempts to change the class associated with a symbol that is
defined as a type specifier by ISO Lisp. See the section “Integrating Types and Classes.”

Functions in the Programmer Interface 2–19

initialize-instance Standard Generic Function

Purpose:

The generic function initialize-instance is called by make-instance to initialize a newly
created instance. The generic function initialize-instance is called with the new instance and
the defaulted initialization arguments.

The system-supplied primary method on initialize-instance initializes the slots of the instance
with values according to the initialization arguments and the :initform forms of the slots.

Syntax:

initialize-instance instance [Generic Function]

Method Signatures:

initialize-instance (instance <standard-object>) [Primary Method]

Arguments:

The instance argument is the object to be initialized.

Values:

The modified instance is returned as the result.

Remarks:

Programmers can define methods for initialize-instance to specify actions to be taken when
an instance is initialized. If only :after methods are defined, they will be run after the system-
supplied primary method for initialization and therefore will not interfere with the default behav-
ior of initialize-instance.

See Also:

“Object Creation and Initialization”

make-instance

slot-boundp

2–20 ISO Lisp Object System Specification

make-instance Standard Generic Function

Purpose:

The generic function make-instance creates and returns a new instance of the given class.

The generic function make-instance may be used as described in the section “Object Creation
and Initialization.”

Syntax:

make-instance class [Generic Function]

Method Signatures:

make-instance (class <standard-class>) [Primary Method]

make-instance (class symbol) [Primary Method]

Arguments:

The class argument is a class object or a symbol that names a class.

If the second of the above methods is selected, that method invokes make-instance on the
arguments (find-class class).

The initialization arguments are checked within make-instance. See the section “Object Cre-
ation and Initialization.”

Values:

The new instance is returned.

See Also:

“Object Creation and Initialization”

defclass

initialize-instance

class-of

Functions in the Programmer Interface 2–21

next-method-p Function

Purpose:

The locally defined function next-method-p can be used within the body of a method defined
by a method-defining form to determine whether a next method exists.

Syntax:

next-method-p [Function]

Arguments:

The function next-method-p takes no arguments.

Values:

The function next-method-p returns true or false.

Remarks:

Like call-next-method, the function next-method-p has lexical scope and indefinite extent.

See Also:

call-next-method

2–22 ISO Lisp Object System Specification

slot-boundp Function

Purpose:

The function slot-boundp tests whether a specific slot in an instance is bound.

Syntax:

slot-boundp instance slot-name [Function]

Arguments:

The arguments are the instance and the name of the slot.

Values:

The function slot-boundp returns true or false.

Remarks:

The function slot-boundp allows for writing :after methods on initialize-instance in order to
initialize only those slots that have not already been bound.

Functions in the Programmer Interface 2–23

slot-exists-p Function

Purpose:

The function slot-exists-p tests whether the specified object has a slot of the given name.

Syntax:

slot-exists-p object slot-name [Function]

Arguments:

The object argument is any object. The slot-name argument is a symbol.

Values:

The function slot-exists-p returns true or false.

2–24 ISO Lisp Object System Specification

